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STM32L1xxx6/8/B
Errata sheet

STM32L100x6/8/B, STM32L151x6/8/B and STM32L152x6/8/B 
ultra-low-power device limitations

Silicon identification

This errata sheet applies to the revisions Y, X, W and V of the STMicroelectronics 
STM32L100x6, STM32L100x8, STM32L100xB, STM32L15xx6, STM32L15xx8 and 
STM32L15xxB ultra-low-power products. This family features an ARM® 32-bit Cortex®-M3 
core, for which an errata notice is also available (see Section 1 for details).

A full list of root part numbers is shown in Table 1. 

The products can be identified (see Table 2) by:

• The revision code marked below the sales type on the device package

• The last three digits of the internal sales type printed on the box label

          

          

Caution: This errata sheet does not apply to: 
– STM32L100C6-A 
– STM32L100R8-A 
– STM32L100RB-A 
These are covered by a separate errata sheet.

Table 1. Device summary

Reference Part number

STM32L100x6/8/B STM32L100RB, STM32L100R8, STM32L100C6

STM32L151x6/8/B
STM32L151CB, STM32L151RB, STM32L151VB, STM32L151R6, 
STM32L151C8, STM32L151R8, STM32L151V8, STM32L151C6

STM32L152x6/8/B
STM32L152CB, STM32L152RB, STM32L152VB, STM32L152R6, 
STM32L152C8, STM32L152R8, STM32L152V8, STM32L152C6

Table 2. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the 
STM32L15xxx reference manual for details on how to find the revision code).

Sales type Revision code(2) marked on device

2. Refer to the device datasheets for details on how to identify the revision code on the different packages.

STM32L100x6/8/B “Y”, “X”, “W” and “V”

STM32L151x6/8/B “Y”, “X”, “W” and “V”

STM32L152x6/8/B “Y”, “X”, “W” and “V”

www.st.com

http://www.st.com
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1 ARM® 32-bit Cortex®-M3 limitations

An ARM errata notice of the STM32L1xxxx core is available searching “Cortex®-M3 errata” 
at the following web address: www.arm.com.

All the described limitations are minor and relate to revision r2p0-00rel0 of the Cortex®-M3 
core. Table 3 summarizes these limitations and their implications on the behavior of the 
STM32L1xxxx ultra-low-power devices.

          

1.1 Cortex®-M3 limitation description for the STM32L1xxxx  
ultra-low-power devices

Only the limitations described below have an impact, even though minor, on the 
implementation of the STM32L1xxxx ultra-low-power devices.

All other limitations described in the ARM errata notice (and summarized in Table 3 above) 
have no impact and are not related to the implementation of the STM32L1xxxx ultra-low-
power devices (Cortex-M3 r2p0-00rel0).

1.1.1 Cortex®-M3 LDRD with base in list may result in incorrect base register 
when interrupted or faulted

Description

The Cortex®-M3 Core has a limitation when executing an LDRD instruction from the 
system-bus area, with the base register in a list of the form LDRD Ra, Rb, [Ra, #imm]. The 
execution may not complete after loading the first destination register due to an interrupt 
before the second loading completes or due to the second loading getting a bus fault.

Workarounds

1. This limitation does not impact the device code execution when executing from the 
embedded Flash memory, which is the standard use of the microcontroller.

2. Use the latest compiler releases. As of today, the compilers no longer generate this 
particular sequence. Moreover, a scanning tool is provided to detect this sequence on 
previous releases (refer to your preferred compiler provider).

Table 3. Cortex®-M3 core limitations and impact on microcontroller behavior

ARM 
ID

ARM 
category

ARM
 summary of errata

Impact on 
STM32L1xxxx 

ultra-low-power 
devices

752419 Cat 2 Interrupted loads to SP can cause erroneous behavior Minor

740455 Cat 2 SVC and BusFault/MemManage may occur out of order Minor

602117 Cat 2
LDRD with base in list may result in incorrect base 
register when interrupted or faulted

Minor

563915 Cat 2 Event register is not set by interrupts and debug Minor
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1.1.2 Cortex®-M3 event register is not set by interrupts and debug

Description

When interrupts related to a wake from event (WFE) occur before the WFE is executed, the 
event register used for WFE wakeup events is not set and the event is missed. Therefore, 
when the WFE is executed, the core does not wake up from a WFE if no other event or 
interrupt occurs.

Workarounds

1. For the following interrupt sources:

– All external interrupts/events lines (EXTI)

– PVD output on EXTI line 16 (if VREFINT is enabled only)

– RTC Alarm on EXTI line 17

– USB Wake-up on EXTI line 18

– RTC tamper and timestamp on EXTI line 19

– RTC Wake-up on EXTI line 20

– Comparator 1 wake-up on EXTI line 21 (if VREFINT is enabled only)

– Comparator 2 wake-up on EXTI line 22 (if VREFINT is enabled only)

Use STM32L1xxxx external events instead of interrupts to wake up the core from a WFE by 
configuring an external or internal EXTI line in event mode.

2. For all other interrupt sources, a timer must be programmed to provide a timeout event 
and wake-up the core if the event is likely to arrive before the WFE instruction is 
executed.

1.1.3 Cortex®-M3 interrupted loads to the stack-pointer can cause 
erroneous behavior

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer 
(SP/R13), an erroneous behaviour can occur. In all cases, returning from the interrupt will 
result in the load instruction being executed in an additional time. For all instructions 
performing an update to the base register, the base register will be erroneously updated on 
each execution, resulting in the stack-pointer being loaded from an incorrect memory 
location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only 
occur with hand-written assembly code.
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Both issues can be solved by replacing the direct load to the stack pointer by an 
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

1.1.4 SVC and BusFault/MemManage may occur out of order

Description

If an SVC exception is generated by executing the SVC instruction while the following 
instruction fetch is faulted, then the MemManage or BusFault handler may be entered even 
though the faulted instruction which followed the SVC should not have been executed. 

Workaround

A work around is only required if the SVC handler will not return to the return address that 
has been stacked for the SVC exception and the instruction access after the SVC will fault. 
If this is the case then padding can be inserted between the SVC and the faulting area of 
code, for example, by inserting NOP instructions.
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2 STM32L1xxx6/8/B device silicon limitations

Table 4 gives a summary of the fix status.

The legend for Table 4 is as follows:

A = workaround available,

N = no workaround available,

P = partial workaround available

‘-’ and grayed = fixed.

          

Table 4. Summary of silicon limitations 

Links to silicon limitations
Rev Y

(cut 1.1)

Rev X

(cut 1.2)

Rev W

(cut 1.3)

Rev V

(cut 1.5)

Section 2.1: System 
limitations

Section 2.1.1: Unexpected Flash/EEPROM 
behavior on system reset during 
programming/erasing

N - - -

Section 2.1.2: Bootloader unavailability N - - -

Section 2.1.3: Undefined instruction exception 
during IAP

A - - -

Section 2.1.4: Factory trimming values not available A A A -

Section 2.1.5: Debug support for low-power modes 
with entry through the WFE instruction

A A A A

Section 2.1.6: Operating temperature range limited 
to “-10°C to +85°C”

N N - -

Section 2.1.7: MCU may not restart after a reset 
when using HSE bypass as main  clock source

N N - -

Section 2.1.8: Pull-up on PB7 when configured in 
analog mode

A A A A

Section 2.1.9: Range 1 of dynamic voltage scaling 
has a limit lower than 2.0 V

A A A -

Section 2.1.10: HSEBYP bit of Clock control 
register has an undefined reset value

- - A A

Section 2.1.11: Delay after enabling an RCC 
peripheral clock

A A A A

Section 2.1.12: Flash memory wakeup issue when 
waking up from Stop or Sleep with Flash memory in 
power-down mode

A A A A

Section 2.1.13: Unexpected system reset when 
waking up from Stop mode with regulator in low-
power mode

A A A A

Section 2.2: IWDG 
peripheral limitation

Section 2.2.1: RVU and PVU flags are not reset in 
Stop mode

A A A A
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Section 2.3: I2C 
peripheral 
limitations

Section 2.3.1: SMBus standard not fully supported A A A A

Section 2.3.2: Wrong behavior of I2C peripheral in 
Master mode after misplaced STOP

A A A A

Section 2.3.3: Violation of I2C “setup time for 
repeated START condition” parameter

A A A A

Section 2.3.4: In I2C slave “NOSTRETCH” mode, 
underrun errors may not be detected and may 
generate bus errors

A A A A

Section 2.3.5: Spurious bus error detection in 
Master mode

A A A A

Section 2.3.6: 10-bit Master mode: new transfer 
cannot be launched if first part of the address has 
not been acknowledged by the slave

A A A A

Section 2.4: USART 
peripheral 
limitations

Section 2.4.1: Idle frame is not detected if receiver 
clock speed is deviated

N N N N

Section 2.4.2: In full duplex mode, the Parity Error 
(PE) flag can be cleared by writing the data register

A A A A

Section 2.4.3: Parity Error (PE) flag is not set when 
receiving in Mute mode using address mark 
detection

N N N N

Section 2.4.4: Break frame is transmitted 
regardless of nCTS input line status

N N N N

Section 2.4.5: nRTS signal abnormally driven low 
after a protocol violation

A A A A

Section 2.4.6: Start bit detected too soon when 
sampling for NACK signal from the smartcard

N N N N

Section 2.4.7: Break request can prevent the 
Transmission Complete flag (TC) from being set

A A A A

Section 2.4.8: Guard time is not respected when 
data are sent on TXE events

A A A A

Section 2.4.9: nRTS is active while RE or UE = 0 A A A A

Section 2.5: USB 
peripheral limitation

Section 2.5.1: Pull-up resistor has a value lower 
than 1.5 kOhm

A A A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Rev Y

(cut 1.1)

Rev X

(cut 1.2)

Rev W

(cut 1.3)

Rev V

(cut 1.5)



DocID17721 Rev 14 11/33

STM32L100x6/8/B, STM32L15xx6/8/B STM32L1xxx6/8/B device silicon limitations

32

Section 2.6: SPI 
peripheral 
limitations

Section 2.6.1: CRC still sensitive to communication 
clock when SPI is in slave mode even with NSS 
high

A A A A

Section 2.6.2: BSY bit may stay high at the end of a 
data transfer in Slave mode

A A A A

Section 2.6.3: Wrong CRC calculation when the 
polynomial is even

A A A A

Section 2.6.4: Wrong CRC transmitted in Master 
mode with delayed SCK feedback

A A A A

Section 2.6.5: SPI CRC may be corrupted when a 
peripheral connected to the same DMA channel of 
the SPI finishes its DMA transaction

N N N N

Section 2.6.6: Corrupted last bit of data and/or 
CRC, received in Master mode with delayed SCK 
feedback

A A A A

Section 2.7: I2S 
peripheral 
limitations

Section 2.7.1: In I2S Slave mode, WS level must be 
set by the external master when enabling the I2S

A A A A

Section 2.7.2: Corrupted last bit of data and/or 
CRC, received in Master mode with delayed SCK 
feedback

A A A A

Section 2.8: ADC 
peripheral 
limitations

Section 2.8.1: ADC converter partially tested on 
parts with date code before 047

A - - -

Section 2.9: DAC 
peripheral 
limitations

Section 2.9.1: Spurious activation of DAC output 
buffer (PA4 and PA5)

A A A A

Section 2.10: RTC 
limitation

Section 2.10.1: Spurious tamper detection when 
disabling the tamper channel

N N N N

Section 2.10.2: RTC calendar registers are not 
locked properly

A A A A

Section 2.11: 
Package limitation

Section 2.11.1: Thermal characteristics for 
UFQFPN48 package

A A A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Rev Y

(cut 1.1)

Rev X

(cut 1.2)

Rev W

(cut 1.3)

Rev V

(cut 1.5)
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2.1 System limitations

2.1.1 Unexpected Flash/EEPROM behavior on system reset during 
programming/erasing

Description

Part of the internal EEPROM state machine is not correctly reset if the reset occurs during a 
programming or reset phase. This can cause the MCU either to take several seconds to exit 
from the reset phase or need a power cycling to resume operation.

Workaround

None.

2.1.2 Bootloader unavailability

Description

The boot loader cannot be used due the issue described in Section 2.1.3: Undefined 
instruction exception during IAP.

Workaround

No workaround is available.

2.1.3 Undefined instruction exception during IAP

Description

The Flash memory can return a corrupted data following a programming of the Flash itself or 
the EEPROM area and possibly cause a hard fault exception due to undefined instruction.

The behavior depends on the location of the routine which is executing the programming. It 
occurs only when IAP is executed from the upper part of memory (0x08000000 to  
0x0800 FFFF).

The issue can occur when the bootloader is used.

Workaround

There are two possible workarounds

1. 1. The IAP routines must be located in the bottom part of the memory (0x08010000 to 
0x0801 FFFF).

or

2. The IAP routine must be relocated in RAM, and programming followed by a dummy 
read in Flash before resuming execution from the Flash memory.

Before branching to the RAM, the following procedure must be followed:

The vector table and all exception and interrupt handlers that might be triggered must be 
copied into the RAM memory. The vector table offset must be updated in the SCB_VTOR 
register of the Cortex-M3.
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The amount of RAM memory needed can be minimized by disabling all interrupts during the 
IAP execution. This can be done with the void __disable_irq(void) function from the CMSIS 
library. Similarly, the Clock Security System (CSS) can be disabled to prevent any NMI from 
occurring. However, it is mandatory to remap at least the Cortex M3's fault handlers.

2.1.4 Factory trimming values not available

Description

The following parameters are not available or wrong in the non-volatile memory factory 
trimming area:

• VREFINT value

• Temperature sensor value at 90 °C

Workaround

Parameters can be measured on the customer production line and stored in the data 
EEPROM.

2.1.5 Debug support for low-power modes with entry through the 
WFE instruction

Description

The DBG_STOP and DBG_SLEEP bits in the DBGMCU_CR register can be used to debug 
an application low-power mode without loosing the JTAG connection.

The application may not resume correctly in the following cases:

• the DBG_STOP bit is set and the WFE instruction is used.

• the DBG_SLEEP bit is set, either the SRAMLPEN or the FLTFEN bits are set (in the 
RCC_AHBLPENR register) and the WFE instruction is used.

This affects only the debug of Stop mode and Sleep modes with an entry into WFE mode. 
Low-power modes are not affected when the MCU is not in debug configuration.

Workaround

The WFE instruction must be executed in a dedicated function with 1 instruction (NOP) 
between the execution of the WFE and the BX LR.

__asm void _WFE(void)

{

WFE

NOP

BX lr

}
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2.1.6 Operating temperature range limited to “-10°C to +85°C”

Description

The microcontroller has an operating temperature range of -10°C to +85°C.

Workaround

None.

2.1.7 MCU may not restart after a reset when using HSE bypass as main 
clock source

Description

When the system clock source is the HSE bypass (for instance, external oscillator), the 
MCU may not restart after a reset event.

Workaround

None.

2.1.8 Pull-up on PB7 when configured in analog mode

Description

PB7 can be used as a Power Voltage Detection Input. To select this, the IO is configured in 
analog mode through GPIOB_MODER and selected as external input analog voltage for the 
PVD level selection through bits PLS[2:0] in the PWR_CR register.

When PB7 is configured in analog mode but not selected for the PVD level selection, then 
an internal pull-up is visible through PB7. 

Workaround

Configuring PB7 to limit the power consumption whatever the external connection can be 
done differently:

1. Keep PB7 in Input mode (default of GPIOB_MODER) 

2. Disconnect the schmidt trigger on PB7 by programming the RI_HYSCR1. 

2.1.9 Range 1 of dynamic voltage scaling has a limit lower than 2.0 V 

Description

In latest documents, the range 1 of dynamic voltage scaling is available from VDD = 1.71 V 
and above. This does not apply to all revisions. 

Workaround

The revisions impacted by this limitation can use range 1 when VDD is equal to or above 
2.0 V. 
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2.1.10 HSEBYP bit of Clock control register has an undefined reset value

Description

The HSEBYP bit, which bypasses the oscillator with an external clock, is not reset after 
system reset nor after power-on reset. After power-on reset, it has an undefined value.

Workaround

The software has to set the HSEBYP bit to the requested value after reset.

2.1.11 Delay after enabling an RCC peripheral clock 

Description

When enabling an RCC peripheral clock, there is a delay between the clock enable and the 
effective peripheral enabling. The user should take this into account to manage the 
peripheral read/write to registers.

This delay depends on the peripheral mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB 
prescaler) cycles.

Workaround

There are two workarounds: 

1. Use the DSB instruction to stall the Cortex-M CPU pipeline until the instruction is 
completed.

2. Insert "n" NOPs between the RCC enable bit write and the peripheral register writes  
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

2.1.12 Flash memory wakeup issue when waking up from Stop or Sleep  
with Flash memory in power-down mode

Description

When an external wakeup event (EXTI) occurs in a narrow time window around low-power 
mode entry (Stop or Sleep mode with Flash memory in power-down state), the Flash 
wakeup time may be increased. As a result, the first data read or instruction fetch from the 
Flash memory may be incorrect. 

The probability that this issue occurs is very low since it may happen only during a 
very narrow time window. 

Workarounds

Two workarounds are available:

• Do not put the Flash memory module in power-down mode when entering Sleep or 
Low-power sleep modes.

• Before entering Stop mode by executing a WFI instruction from RAM, set the RUN_PD 
bit in the FLASH_ACR register. After exiting from Stop mode, the Flash memory is 
automatically powered ON and the user can resume program execution from Flash 
memory. After wakeup, clear the RUN_PD bit.
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2.1.13 Unexpected system reset when waking up from Stop mode with 
regulator in low-power mode

Description

If the device returns to Run mode after waking up from Stop mode while the internal voltage 
regulator is configured to switch to low-power mode in Stop mode (LPSDSR=1 in PWR_CR 
register), an unexpected system reset may occur if the following conditions are met:

• The internal regulator is set to Range 2 or Range 3 before entering Stop mode.

• VDD power supply is below 2.7 V. 

The probability that this issue occurs is very low since it may happen only for very 
narrow supply voltage windows which vary from one device to another. 

This reset is internal only and does not affect the NRST pin state and the flags in the 
control/status register (RCC_CSR).

Workarounds

Two workarounds are possible:

• Enter Stop mode with the internal voltage regulator set to main mode (LPSDSR=0 in 
PWR_CR).

• Set the internal voltage regulator to Range1 before entering Stop mode.

2.2 IWDG peripheral limitation

2.2.1 RVU and PVU flags are not reset in Stop mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access 
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered 
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register, 
the application software must wait for the RVU or PVU flag to be reset. However, since the 
RVU/PVU bit is not reset after exiting Stop mode, the software goes into an infinite loop and 
the independent watchdog (IWDG) generates a reset after the programmed timeout period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register are reset before entering Stop 
mode.
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2.3 I2C peripheral limitations

2.3.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since it does not 
support the capability to NACK an invalid byte/command.

Workarounds

The following higher-level mechanisms should be used to verify that a write operation is 
being performed correctly at the target device:

1. The SMBA pin if supported by the host

2. The alert response address (ARA) protocol

3. The host notify protocol

2.3.2 Wrong behavior of I2C peripheral in Master mode after  
misplaced STOP

Description

The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated 
on the bus. This can happen in the following conditions:

• If a void message is received (START condition immediately followed by a STOP): the 
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START 
condition on the bus after writing to the START bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register. 
If the START bit is already set in I2C_CR2, the START condition is not correctly 
generated on the bus and can create bus errors.

Workaround

In the I2C standard, it is not allowed to send a STOP before the full byte is transmitted (8 bits 
+ acknowledge). Other derived protocols like CBUS allow it, but they are not supported by 
the I²C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to 
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is 
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit 
in the I2C_CR2 control register. The I2C peripheral should be reset in the same way if a 
BERR is detected while the START bit is set in I2C_CR2.

No fix is planned for this limitation.
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2.3.3 Violation of I2C “setup time for repeated START condition” parameter

Description

In case of a repeated Start, the “setup time for repeated START condition” parameter 
(named tSU(STA) in the datasheet and Tsu:sta in the I2C specifications) may be slightly 
violated when the I2C operates in Master Standard mode at a frequency ranging from 88 to 
100 kHz. tSU(STA) minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:

1. The I2C peripheral operates in Master Standard mode at a frequency ranging from 88 
to 100 kHz (no issue in Fast mode).

2. and the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns 
(the issue cannot occur when the SCL rise time is less than 300 ns).

– or the slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the 
slave.

2.3.4 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected 
and may generate bus errors

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as 
well as the maximum current data hold time (tHD;DAT) under the conditions described below. 
In addition, if the data register is written too late and close to the SCL rising edge, an error 
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be 
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:

1. The I2C peripheral operates In Slave transmit mode with clock stretching disabled 
(NOSTRETCH=1).

2. and the application is late to write the DR data register, but not late enough to set the 
OVR flag (the data register is written before the SCL rising edge).

Workaround

If the master device supports it, use the clock stretching mechanism by programming the bit 
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register 
is performed just after TXE or ADDR events. The user can use an interrupt on the TXE or 
ADDR flag and boost its priority to the higher level or use DMA. 

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from 
being late to write the DR register (second condition). 
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Note: The first data to be transmitted must be written into the data register after the ADDR flag is 
cleared, and before the next SCL rising edge, so that the time window to write the first data 
into the data register is less than tLOW. 

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag

2. Wait for the OVR flag to be set

3. Clear OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case, 
the master must discard the first received data.

2.3.5 Spurious bus error detection in Master mode

Description

In Master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly 
raised in the status register. This will generate a spurious bus error interrupt if the interrupt is 
enabled. A bus error detection has no effect on the transfer in Master mode, therefore the 
I2C transfer can continue normally. 

Workaround

If a bus error interrupt is generated in Master mode, the BERR flag must be cleared by 
software. No other action is required and the on-going transfer can be handled normally. 

2.3.6 10-bit Master mode: new transfer cannot be launched if first 
part of the address has not been acknowledged by the slave

Description

In Master mode, the master automatically sends a STOP bit when the slave has not 
acknowledged a byte during the address transmission. 

In the 10-bit addressing mode, if the first part of the 10-bit address (corresponding to 10-bit 
header + 2 MSB) has not been acknowledged by the slave, the STOP bit is sent but the 
START bit is not cleared and the master cannot launch a new transfer.

Workaround 

When the I2C is configured in 10-bit addressing Master mode and the NACKF status flag is 
set in the I2C_ISR register while the START bit is still set in the I2C_CR2 register, then 
proceed as follows: 

1. Wait for the STOP condition detection (STOPF = 1 in I2C_ISR register).

2. Disable the I2C peripheral.

3. Wait for a minimum of 3 APB cycles.

4. Enable the I2C peripheral again.
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2.4 USART peripheral limitations

2.4.1 Idle frame is not detected if receiver clock speed is deviated 

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter 
device is faster than the USART receiver clock, the USART receive signal falls too early 
when receiving the character start bit, with the result that the idle frame is not detected 
(IDLE flag is not set).    

Workaround

None.

2.4.2 In full duplex mode, the Parity Error (PE) flag can be cleared by  
writing the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a 
reception, it may be cleared while transmitting by reading the USART_SR register to check 
the TXE or TC flags and writing data in the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error 
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.4.3 Parity Error (PE) flag is not set when receiving in Mute mode  
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the 
address mark detection. When the USART receiver recognizes a valid address with a parity 
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.4.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is 
set, the transmitter sends a break frame at the end of current transmission regardless of 
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted 
break frame is lost.
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Workaround

None.

2.4.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when a data is 
received. If this data was not read and a new data is sent to the USART (protocol violation), 
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive 
further data.

On USART side, an overrun is detected which indicates that some data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication 
protocol which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading in the data in the data register, the software 
takes over the control of the nRTS signal as a GPIO and holds it high as long as 
needed. If the USART device is not ready, the software holds the nRTS pin high, and 
releases it when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than 
the duration of the second data reception. For example, this can be ensured by treating 
all the receptions by DMA mode.

2.4.6 Start bit detected too soon when sampling for NACK signal 
from the smartcard

Description

In the ISO7816, when a character parity error is incorrect, the smartcard receiver shall 
transmit a NACK error signal at (10.5 +/- 0.2) etu after the character Start bit falling edge. In 
this case, the USART transmitter should be able to detect correctly the NACK signal by 
sampling at (11.0 +/-0.2) etu after the character Start bit falling edge. 

The USART peripheral used in smartcard mode doesn't respect the (11 +/-0.2) etu timing, 
and when the NACK falling edge arrives at 10.68 etu or later, the USART might misinterpret 
this transition as a Start bit even if the NACK is correctly detected. 

Workaround 

None. 
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2.4.7 Break request can prevent the Transmission Complete flag (TC) from 
being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be 
set in the following conditions: 

• CTS hardware flow control is enabled. 

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of transfer of D1. 

Workaround 

If the application needs to detect the end of transfer of the data, the break request should be 
done after making sure that the TC flag is set. 

2.4.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not 
respected i.e. the data written in the data register is transferred on the bus without waiting 
for the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the 
guard time duration.

2.4.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled (UE = 
0) or the receiver is disabled (RE = 0) i.e. not ready to receive data. 

Workaround

Configure the I/O used for nRTS as alternate function after setting the UE and RE bits. 
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2.5 USB peripheral limitation

2.5.1 Pull-up resistor has a value lower than 1.5 kOhm

Description

The pull-up resistor on USB line is requested to have a nominal value of 1.5 kΩ, whereas 
the characterization of the internal pull-up shows a value between 0.81 kΩ and 0.95 kΩ on 
the full temperature range.

Workaround

An external pull-up resistor controlled by a GPIO can be used.

2.6 SPI peripheral limitations

2.6.1 CRC still sensitive to communication clock when SPI is in slave mode 
even with NSS high

Description

When the SPI is configured in slave mode with the CRC feature enabled, the CRC is 
calculated even if the NSS pin deselects the SPI (high level applied on the NSS pin).

Workaround

The CRC has to be cleared on both Master and Slave sides between the slave deselection 
(high level on NSS) and the slave selection (low level on NSS), in order to resynchronize the 
master and slave for their respective CRC calculation.

The procedure to clear the CRC is as follows:

1. Disable the SPI (SPE = 0)

2. Clear the CRCEN bit

3. Set the CRCEN bit

4. Enable the SPI (SPE = 1)



STM32L1xxx6/8/B device silicon limitations STM32L100x6/8/B, STM32L15xx6/8/B

24/33 DocID17721 Rev 14

2.6.2 BSY bit may stay high at the end of a data transfer in Slave mode

Description

The BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The 
issue appears when an accidental synchronization happens between the internal CPU clock 
and external SCK clock provided by the master.

This is related to the end of data transfer detection while the SPI is enabled in Slave mode.

As a consequence, the end of data transaction may be not recognized when the software 
needs to monitor it (e.g. at the end of session before entering the low-power mode or before 
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is 
unreliable to detect the end of any data sequence transaction.

Workaround

When the NSS hardware management is applied and the NSS signal is provided by the 
master, the end of a transaction can be detected by the NSS polling by the slave. 

• If the SPI receiving mode is enabled, the end of a transaction with the master can be 
detected by the corresponding RXNE event signalizing the last data transfer 
completion. 

• In SPI transmit mode, the user can check the BSY under timeout corresponding to the 
time necessary to complete the last data frame transaction. The timeout should be 
measured from TXE event signalizing the last data frame transaction start (it is raised 
once the second bit transaction is ongoing). Either BSY becomes low normally or the 
timeout expires when the synchronization issue happens. 

When upper workarounds are not applicable, the following sequence can be used to 
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register

2. Poll TXE until it becomes high to ensure the data transfer has started

3. Disable SPI by clearing SPE while the last data transfer is still ongoing

4. Poll the BSY bit until it becomes low

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when CPU has enough performance to disable SPI after 
the TXE event is detected while the data frame transfer is still ongoing. It is impossible to 
achieve it when the ratio between CPU and SPI clock is low and the data frame is short 
especially. In this specific case the timeout can be measured from TXE, while calculating a 
fixed number of CPU clock periods corresponding to the time necessary to complete the 
data frame transaction.

2.6.3 Wrong CRC calculation when the polynomial is even

Description

When the CRC is enabled, the CRC calculation will be wrong if the polynomial is even. 

Workaround

Use odd polynomial. 
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2.6.4 Wrong CRC transmitted in Master mode with delayed SCK feedback

Description

In transmit transaction of the SPI interface in Master mode with the CRC enabled, the CRC 
data transmission may be corrupted if the delay of an internal feedback signal derived from 
the SCK output (further feedback clock) is greater than two APB clock periods. While the 
data and the CRC bit shifting and the transfer is based on an internal clock, the CRC 
progressive calculation uses the feedback clock. If the delay of the feedback clock is greater 
than two APB periods, the transmitted CRC value may get wrong.

The main factors contributing to the delay increase are low VDD level, high temperature, 
high SCK pin capacitive load and low SCK I/O output speed. The SPI communication speed 
has no impact.

Workaround

The following workaround can be adopted, jointly or individually:

• Decrease the APB clock speed.

• Configure the IO pad of the SCK pin to be faster.

Table 5 gives the maximum allowable APB frequency versus the GPIOx_OSPEEDR output 
speed control field setting for the SCK pin, at 30 pF of capacitive load.

2.6.5 SPI CRC may be corrupted when a peripheral connected to the same 
DMA channel of the SPI finishes its DMA transaction

Description

When the SPI is running with the CRC feature enabled at all the modes, the CRC 
calculation may be frozen and checked corrupted before the CRCNEXT bit is written. It can 
happen if a peripheral, mapped on the same DMA channel than the SPI, is doing a DMA 
transfer whereas the SPI is configured to manage data transfers by software (IT or polling). 
As a consequence the CRC error flag is unduly raised.

Workaround

There is no known workaround of this conflict. If possible use the DMA for SPI transfers to 
avoid this conflict.
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2.6.6 Corrupted last bit of data and/or CRC, received in Master mode with 
delayed SCK feedback

Description

In receive transaction, in both I2S and SPI Master modes, the last bit of the transacted frame 
is not captured when the signal provided by internal feedback loop from the SCK pin 
exceeds a critical delay. The lastly transacted bit of the stored data then keeps the value 
from the pattern received previously. As a consequence, the last receive data bit may be 
wrong and/or the CRCERR flag can be unduly asserted in the SPI mode if any data under 
check sum and/or just the CRC pattern is wrongly captured. 

In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock 
periods can thus be tolerated for the internal feedback delay. The I2S mode is more 
sensitive than the SPI mode since the SCK clock is not synchronized with the APB clock. In 
this case, the margin of the internal feedback delay is lower than one APB clock period.

The main factors contributing to the delay increase are low VDD level, high temperature, 
high SCK pin capacitive load and low SCK I/O output speed. The SPI communication speed 
has no impact.

Workarounds

The following workaround can be adopted, jointly or individually:

• Decrease the APB clock speed.

• Configure the IO pad of the SCK pin to be faster.

Table 5 gives the maximum APB frequency versus the GPIOx_OSPEEDR output speed 
control field setting for the SCK pin, at 30 pF of capacitive load.

          

Table 5. Maximum allowable APB frequency at 30 pF load 

Setting of OSPEEDR bits [1:0] for 
the SCK pin

Maximum APB frequency 
for SPI [MHz]

Maximum APB frequency 
for I2S [MHz]

Very high (11) 32 32

High (10)
28

(30 if VDD > 1.8 V)

28

(30 if VDD > 1.8 V)

Medium (01)
11

(13 if VDD > 1.8 V)

8

(9 if VDD > 1.8 V)

Low (00) 2 1.5
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2.7 I2S peripheral limitations

2.7.1 In I2S Slave mode, WS level must be set by the external master when 
enabling the I2S

Description

In Slave mode, the WS signal level is used only to start the communication. If the I2S (in 
Slave mode) is enabled while the master is already sending the clock and the WS signal 
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts 
communicating data immediately. In this case, the master and the slave will be 
desynchronized throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

• High level when the I2S protocol is selected.

• Low level when the LSB or MSB-justified mode is selected.

2.7.2 Corrupted last bit of data and/or CRC, received in Master mode with 
delayed SCK feedback

The limitation described in Section 2.6.6: Corrupted last bit of data and/or CRC, received in 
Master mode with delayed SCK feedback also applies to I2S interface.

2.8 ADC peripheral limitations

2.8.1 ADC converter partially tested on parts with date code before 047

Description

The ADC converter production test is partially implemented for parts with date code before 
047. As a result, it must be anticipated that 0.15% of parts will have ADC failures.

Workaround

None.
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2.9 DAC peripheral limitations

2.9.1 Spurious activation of DAC output buffer (PA4 and PA5)

Description

The high speed signal with a falling edge and a slope higher than 7V/us can cause a 
spurious activation of the DAC buffer if applied on the pins PA4 and PA5. Such spurious 
activation can happen regardless of the GPIO configuration and it may pull a current from 
the signal source up to 1 mA in the typical conditions. As a result of this unintended DAC 
buffer pulling, a shape of the falling edge may change and cause shifted timing of the digital 
signal applied on the pin. 

Workarounds

• Use another IO with an equivalent function. 

• Reduce the slope of the signal applied on the affected pins.

2.10 RTC limitation

2.10.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detection on the falling edge event (TAMPFLT=00 
and TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at 
high level, a false tamper event is detected.

Workaround

None.

2.10.2 RTC calendar registers are not locked properly

Description

When reading the calendar registers with BYPSHAD=0, the RTC_TR and RTC_DR 
registers may not be locked after reading the RTC_SSR register. This happens if the read 
operation is initiated one APB clock period before the shadow registers are updated. This 
can result in a non-consistency of the three registers. Similarly, the RTC_DR register can be 
updated after reading the RTC_TR register instead of being locked.

Workaround

1. Use BYPSHAD = 1 mode (Bypass shadow registers), or

2. If BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still 
the same, otherwise read the values again.
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2.11 Package limitation

2.11.1 Thermal characteristics for UFQFPN48 package

Description

The thermal resistance junction-ambient for UFQFPN48 package was not correctly 
specified in STM32L15x6/8/B datasheet prior revision 8 and STM32L100x datasheet prior 
revision 2.

Workaround

Limit the power dissipation of the device to not exceed the maximum chip-junction 
temperature for the maximum ambient temperature at which the device is operated. For 
guidance and correct thermal resistance value, see the latest datasheet available on the 
company website.
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3 Revision history

          

Table 6. Document revision history 

Date Revision Changes

05-Jul-2010 1 Initial release.

01-Oct-2010 2

Added workarounds under Section 1.1.2: Cortex®-M3 event register is 
not set by interrupts and debug.

Added Section 2.1: System limitations.

Changed workaround under Section 2.4: Extra consumption in STOP / 
STANDBY mode.

Added Section 2.2: IWDG peripheral limitation.

Added Section 2.6: POR start-up delay at cold temperature.

06-Dec-2010 3

Removed sections describing Rev A issues fixed in Rev B.

Added Section 2.1.3: Undefined instruction exception during IAP.

Updated Section 2.1.4: Factory trimming values not available.

19-Jan-2011 4

Replaced Rev B by Rev Y. 
Modified descriptions of Section 2.3.2: Wrong behavior of I2C peripheral 
in Master mode after misplaced STOP, Section 2.3.3: Violation of I2C 
“setup time for repeated START condition” parameter and Section 2.3.4: 
In I2C slave “NOSTRETCH” mode, underrun errors may not be detected 
and may generate bus errors.

Updated Table 4.

25-Feb-2011 5

Added description of Rev W. 
Added Section 2.1.6: Debugging Stop mode with WFE entry and 
Section 2.1.7: MCU may not restart after a reset when using HSE bypass 
as main  clock source.

12-Oct-2011 6
Updated Table 4 and Section 2.1.4: Factory trimming values not available.

Added Section 2.3.5: Spurious bus error detection in Master mode and 
Section 2.5: USB peripheral limitation.

18-Dec-2012 7

Added rev V.

Added Section 1.1.3: Cortex®-M3 interrupted loads to the stack-pointer 
can cause erroneous behavior and Section 1.1.4: SVC and 
BusFault/MemManage may occur out of order.

Updated Table 2.

Updated Table 4.

Added Section 2.1.8: Pull-up on PB7 when configured in analog mode.

USART limitation workaround update: Section 2.4.5: nRTS signal 
abnormally driven low after a protocol violation.

IWDG PVU and RVU limitation update: Section 2.2: IWDG peripheral 
limitation.

Replaced figure 2: LQFP100 top package view.
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05-Nov-2013 8

Added:

– Section 2.1.9: Range 1 of dynamic voltage scaling has a limit lower than 
2.0 V

– Section 2.1.10: HSEBYP bit of Clock control register has an undefined 
reset value

– Section 2.1.11: Delay after enabling an RCC peripheral clock

Updated Table 4: Summary of silicon limitations.

19-Feb-2014 9

Extended the document applicability to STM32L100x6/8/B devices.

Updated Table 1: Device summary, Table 2: Device identification, Table 4: 
Summary of silicon limitations. 

Added Section 2.11: Package limitation.

Added the Caution on the cover page.

10-Oct-2014 10
Added Section 2.6.2: BSY bit may stay high at the end of a data transfer 
in Slave mode.

07-Jul-2015 11

Removed appendix A section: all package markings put in the 
corresponding datasheets.

Added USART limitations:

- Section 2.4.6: Start bit detected too soon when sampling for NACK 
signal from the smartcard.

- Section 2.4.7: Break request can prevent the Transmission Complete 
flag (TC) from being set.

- Section 2.4.8: Guard time is not respected when data are sent on TXE 
events.

- Section 2.4.9: nRTS is active while RE or UE = 0.

Added SPI limitation:

- Section 2.6.3: Wrong CRC calculation when the polynomial is even.

Added RTC limitation:

- Section 2.10.1: Spurious tamper detection when disabling the tamper 
channel.

20-Aug-2015 12

Updated Table 4: Summary of silicon limitations: ‘factory trimming values 
not available’ system limitation is fixed for the Rev V.

Added one I2C limitation: Section 2.3.5: Spurious bus error detection in 
Master mode.

Updated Table 4: Summary of silicon limitations putting a workaround 
available status ‘A’ for the I2C limitation.

Table 6. Document revision history (continued)

Date Revision Changes
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17-Nov-2015 13

Added system limitations:

– Section 2.1.12: Flash memory wakeup issue when waking up from Stop 
or Sleep with Flash memory in power-down mode.

– Section 2.1.13: Unexpected system reset when waking up from Stop 
mode with regulator in low-power mode.

07-Nov-2016 14

Added I2C limitation:

– Section 2.3.6: 10-bit Master mode: new transfer cannot be launched if 
first part of the address has not been acknowledged by the slave.

Added RTC limitation:

– Section 2.10.2: RTC calendar registers are not locked properly.

Added DAC limitation:

– Section 2.9.1: Spurious activation of DAC output buffer (PA4 and PA5).

Added SPI limitations:

– Section 2.6.4: Wrong CRC transmitted in Master mode with delayed 
SCK feedback.

– Section 2.6.5: SPI CRC may be corrupted when a peripheral connected 
to the same DMA channel of the SPI finishes its DMA transaction.

– Section 2.6.6: Corrupted last bit of data and/or CRC, received in Master 
mode with delayed SCK feedback.

Added I2S limitations:

– Section 2.7.1: In I2S Slave mode, WS level must be set by the external 
master when enabling the I2S.

– Section 2.7.2: Corrupted last bit of data and/or CRC, received in Master 
mode with delayed SCK feedback.

Table 6. Document revision history (continued)

Date Revision Changes
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IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and 
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on 
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order 
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or 
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved
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